

MADRID, MARCH 5, 2024

JUAN RAMON GONZALEZ
CTO AT MÁTICA PARTNERS

MADRID, MARCH 5, 2024

DATA QUALITY
LLM AGENT FOR
OPERATIONAL
INTEGRATION

GENERATIVE APPLICATION FOR
CREATING QUALITY RULES

JUAN RAMON GONZALEZ
CTO AT MÁTICA PARTNERS

ommadata.ai

 OMMA Data S.L.

Page 1 of 23

This document is confidential and the property of OMMA Data SL. Its use, reproduction, or distribution is
prohibited without prior written authorization from OMMA Data SL.

1. OMMA: an introduction ... 3

2. Introduction to Integrating LLMs for Creating Natural Language Rules in
OMMA .. 3

2.1 Rule creation workflow in OMMA .. 5

2.2 Generative Application Requirements for OMMA ... 6

3. Design of Generative Application ... 8

3.1 Customized Agent for Process Coordination ... 8

3.2 Class Structure with Pydantic .. 9

3.3 Structured Output Configuration ... 9

3.4 Planner Agent .. 10

3.5 Implementing Structured Output in the Planning Agent using LangChain ... 10

3.5.1 Defining the Response Class: ... 10

3.5.2 Creating the Parser: ... 11

3.5.2.1 Creating the Prompt .. 12

3.5.3 Validation and testing .. 12

3.6 Implementation of Improved Tools for Response Generation in OMMA 13

3.6.1 Modification of the Tools .. 14

3.6.2 Agent Configuration ... 14

3.6.3 Benefits ... 14

3.6.4 Token Consumption Issue ... 14

3.7 Implementation Summary ... 15

 OMMA Data S.L.

Page 2 of 23

This document is confidential and the property of OMMA Data SL. Its use, reproduction, or distribution is
prohibited without prior written authorization from OMMA Data SL.

4. Integration in OMMA .. 16

4.1 Testing and Validation ... 18

4.1.1 Dataset PK Validation ... 18

4.1.2 Validation of Non-Null Fields ... 19

4.1.3 Validation with Execution Conditions ... 20

5. Conclusions and Next Steps ... 22

 OMMA Data S.L.

Page 3 of 23

This document is confidential and the property of OMMA Data SL. Its use, reproduction, or distribution is
prohibited without prior written authorization from OMMA Data SL.

1. OMMA: an introduction
OMMA is an advanced data quality tool designed to facilitate the creation and

management of quality policies through no-code interfaces. From its inception,

OMMA has aimed to empower users by allowing them to define data quality rules

without needing extensive technical knowledge. This approach is based on the

premise that a deep understanding of the data is more crucial than programming

skills to ensure data integrity and accuracy.

OMMA simplifies the task of creating data quality rules, which was traditionally done

manually and technically, making it difficult and error-prone. With an intuitive

platform, OMMA enables users to create policies based on their knowledge of the

data, making the process easier and more efficient.

2. Introduction to Integrating LLMs for
Creating Natural Language Rules in
OMMA

We are currently immersed in the application of Large Language Models (LLMs)

across a multitude of tasks. However, like all new technologies, they are in a process

of evolution, standardization, and maturity. Today, the vast majority of use cases we

encounter are based on the creation of chatbots, Retrieval-Augmented Generation

(RAG) systems, and similar applications. The application of LLMs in other practical

scenarios is not yet as widely exploited or documented.

The integration of LLMs into productive processes, where entire areas or

procedures can be replaced by a more agile and user-friendly interface, represents

a significant transformation in how we interact with systems, such as data

management systems.

ommadata.ai
ommadata.ai

 OMMA Data S.L.

Page 4 of 23

This document is confidential and the property of OMMA Data SL. Its use, reproduction, or distribution is
prohibited without prior written authorization from OMMA Data SL.

At Grupo Mática, we have a significant advantage thanks to OMMA, our proprietary

product. With OMMA, we can create, test, and deploy complete productive

functionalities, such as the integration of LLMs in creating quality policies. This

represents a significant step forward, allowing the establishment of rules using

natural language.

This integration has the potential to completely transform the process of defining

data quality policies. By using LLMs, OMMA users will be able to formulate rules

and guidelines in natural language, which will then be interpreted and executed by

the system. This not only simplifies the process, making it more accessible to non-

technical users, but also accelerates implementation time and reduces the

possibility of errors.

The challenge we face with this integration lies in the need to transform data quality

rules and policies that have traditionally been defined manually and technically, into

understandable and applicable guidelines using natural language. This

transformation will not only make the process more accessible but also improve

efficiency and accuracy in data quality management.

In this section, we will explore in detail the challenges and opportunities that come

with integrating LLMs into OMMA. We will analyze how LLMs can efficiently and

accurately interpret and generate data quality rules, thereby improving data

governance. Additionally, we will discuss the methodologies and technical

approaches we have adopted to ensure that this integration is not only effective

but also scalable and secure.

https://www.matica.group/

 OMMA Data S.L.

Page 5 of 23

This document is confidential and the property of OMMA Data SL. Its use, reproduction, or distribution is
prohibited without prior written authorization from OMMA Data SL.

2.1 Rule creation workflow in OMMA

OMMA has been designed to simplify the creation and management of data

quality policies through an intuitive process that requires no advanced technical

knowledge.

The system relies on a three-step form that allows users to define data quality rules

efficiently and accurately.

• Basic Rule Data: In this first step, the user selects the dataset on which they

wish to apply their quality policies. They decide the type of rule they want to

implement and give it a descriptive name. Additionally, they choose the

specific columns of the dataset to which the rule will apply. The user also

decides whether to work with the dataset in its original form or apply

aggregations or joins to enrich the data. This initial step establishes the

foundations of the rule and ensures its application to the relevant.

• Specific Rule Data: In the second step, the specific behavior of the selected

rule is configured. Depending on the type of rule, the user defines detailed

parameters. For example, if a regular expression rule is chosen, the

corresponding regular expression is entered. If the selected rule involves

value ranges, the limits of the ranges are specified. This step allows for

detailed customization of the rule, ensuring it fits the user's exact needs

and the nature of the dataset.

 OMMA Data S.L.

Page 6 of 23

This document is confidential and the property of OMMA Data SL. Its use, reproduction, or distribution is
prohibited without prior written authorization from OMMA Data SL.

• Execution Conditions: In the final step, the user sets the conditions under

which the rule will be executed. This involves defining the conditions that

the data must meet for the rule to be applied. For instance, conditions can

be specified based on dates, specific values in other columns, or any other

relevant criteria. This final stage ensures that quality rules are applied

accurately and in the appropriate context.

This three-step process in OMMA is straightforward and does not require

advanced technical skills, but rather a deep understanding of the data and the type

of validation that needs to be implemented.

Considering modifying this workflow by replacing it with an LLM requires the system

to be capable of mimicking this rule creation behavior.

2.2 Generative Application Requirements for OMMA

To create a generative AI-based system that replaces the rule creation forms in

OMMA, it is necessary to ensure that the workflow is efficient, replicates the current

process, and that the outputs generated are structured and reliable. Below are the

key components and requirements to achieve this objective.

Workflow Definition: Steps to Follow

The system must follow a nested workflow that allows users to create data quality

rules in a structured and sequential manner. This workflow consists of the following

steps:

• Creation of Joins (Optional): The system should allow users to specify if they

want to perform joins with other tables in the database. This involves

identifying and selecting the relevant tables and defining the join conditions.

 OMMA Data S.L.

Page 7 of 23

This document is confidential and the property of OMMA Data SL. Its use, reproduction, or distribution is
prohibited without prior written authorization from OMMA Data SL.

• Creation of Aggregations (Optional): Users may choose to apply

aggregations to the data. The system should offer options to select the types

of aggregations (e.g., sums, averages) and the columns to which they will be

applied.

• Definition of Rules: This is the mandatory step where users specify the type

of rule they want to create (e.g., regex, value ranges) and provide the specific

parameters for each type.

• Configuration of Execution Conditions (Optional): The system should allow

the configuration of conditions under which the rules will be executed,

ensuring that the rules are applied only to the relevant data.

 Structured Output

To ensure the reliability of the system, it is vital that the information handled by the

language model is structured. This means that the output generated by the AI must

have a predefined format that includes all the necessary components: aggregation,

join, list of rules, and execution conditions. This has been one of the critical points.

There is ample documentation on how to implement chains with structured outputs

and even simple agents, but when we enter complex agent systems, as we will see

later, the technical solution becomes more complicated.

Components of the Response Object

The response object of the system should be composed of the following elements:

• Joins: Information about the tables to join and the join conditions.

• Aggregations: Details about the types of aggregations and the columns to

which they are applied.

 OMMA Data S.L.

Page 8 of 23

This document is confidential and the property of OMMA Data SL. Its use, reproduction, or distribution is
prohibited without prior written authorization from OMMA Data SL.

• List of Rules: Definition of the specific rules, including the type of rule and its

parameters.

• Execution Conditions: Conditions under which the rule should be executed.

This will be the final structure that the system must provide, which, as can be seen,
is a composition of the output information from each of the steps.

3. Design of Generative Application
In designing the application, we considered two main approaches: creating an

agent with multiple tools responsible for reasoning and coordinating the process,

and using a library like LangGraph to define a state map and execution flow. We

opted to start with the first option due to our limited experience with LangGraph, as

it is a relatively new and less mature library.

3.1 Customized Agent for Process Coordination

For system development, we decided to create a customized agent with two main

components: a planner responsible for controlling the execution flow and, based

on specific actions, filling in the final response object.

Each action is itself a specific chain, responsible for executing a specific step, such

as creating a schema validation rule, creating a join, etc. This approach allowed us

to modularize the code and facilitate system performance evaluation, as we could

independently test each action and validate its output against the expected

structure before integrating it into the main agent.

 OMMA Data S.L.

Page 9 of 23

This document is confidential and the property of OMMA Data SL. Its use, reproduction, or distribution is
prohibited without prior written authorization from OMMA Data SL.

3.2 Class Structure with Pydantic

The first step was to design a class structure using Pydantic, similar to the

structure we manage in our OMMA backend. This ensured consistency and data

validation throughout the development process. The class structure included

components such as aggregations, joins, execution conditions, and different types

of rules.

Consistency in class definitions is crucial. For instance, in our case, we have a

backend in Spring Boot that defines the classes and their storage in the database.

These classes have corresponding interfaces in TypeScript in the frontend, and the

Pydantic classes were also created with similar correspondences. This way,

systems can exchange data seamlessly between the frontend, backend, and

generative AI.

3.3 Structured Output Configuration

For each rule, we configured a structured output using the following configuration:

structured_llm = model.with_structured_output(QualityAggregation)

This configuration forced the LLM to provide output in the necessary class, offering

two main advantages:

• Optimal Modularization: Allowing each system component to be developed

and tested independently.

• Efficient Unit Testing: Facilitating the evaluation of each rule's behavior by

comparing the LLM's output object with the expected object.

 OMMA Data S.L.

Page 10 of 23

This document is confidential and the property of OMMA Data SL. Its use, reproduction, or distribution is
prohibited without prior written authorization from OMMA Data SL.

3.4 Planner Agent

Once the fundamental components were developed, we focused on creating the

planner. The planner acts as the main agent, coordinating all the necessary

actions to complete the rule creation flow based on user inputs. Below, we describe

the planner implementation process and how it integrates with the tools and

language model.

Defining OMMA Tools

omma_tools = [...] # List of necessary tools for the agent

llm_with_tools = llm.bind_functions([omma_tools + Response]) # Including the defined tools and

the response object created in Pydantic

3.5 Implementing Structured Output in the Planning Agent using
LangChain

To address how to add structured output to the planning agent, we followed

LangChain's instructions for agents with structured output. The approach involves

creating a parser that is added to the tools bound to the planner agent's LLM, but

not to the tools sent to the AgentExecutor.

3.5.1 Defining the Response Class:

We define the Response class using Pydantic to structure the desired output.

 OMMA Data S.L.

Page 11 of 23

This document is confidential and the property of OMMA Data SL. Its use, reproduction, or distribution is
prohibited without prior written authorization from OMMA Data SL.

from pydantic import BaseModel, Field

from typing import Optional, Union, List

class Response(BaseModel):

 joins: Optional[QualityJoins] = Field(description=" Joins to perform")

 aggregation: Optional[QualityAggregation] = Field(description=" Performed aggregation")

 rules: List[QualityRule] = Field(description="The created rules")

 conditions: Optional[QualityCondition] = Field(description=" Rule execution conditions")

3.5.2 Creating the Parser:

We used LangChain to create a parser responsible for formatting the planning

agent's output. Detailed instructions can be found in LangChain's documentation:

https://python.langchain.com/v0.1/docs/modules/agents/how_to/agent_stru

ctured/

It is important to bind the response object to the LLM used for the planning agent

but not to include it in the AgentExecutor tools. The parser is included in the agent

as follows:

agent = (

 {

 "input": lambda x: x["input"],

 # Formatting the agent scratchpad from the intermediate steps

 "agent_scratchpad": lambda x: format_to_openai_function_messages(

 x["intermediate_steps"]),

 }

 | full_prompt

 | llm_with_tools # Include Response in bind tools | parser
)

An important aspect of the above code is the need to bind the tools with the LLM
(Language Model) that will be used and include the Response object.

https://python.langchain.com/v0.1/docs/modules/agents/how_to/agent_structured/
https://python.langchain.com/v0.1/docs/modules/agents/how_to/agent_structured/

 OMMA Data S.L.

Page 12 of 23

This document is confidential and the property of OMMA Data SL. Its use, reproduction, or distribution is
prohibited without prior written authorization from OMMA Data SL.

The AgentExecutor is responsible for executing the agent with the necessary tools,
maintaining the capability to return intermediate steps for analysis.

Creation of the Agent Executor

agent_executor = AgentExecutor(agent=agent, tools=omma_tools, verbose=True,
return_intermediate_steps=True)

It's important not to include the parser in the tools sent to the AgentExecutor; it
should only be bound to the LLM of the planning agent.

3.5.2.1 Creating the Prompt
Although we cannot include the full prompt due to intellectual property reasons for
our product, we can provide a somewhat more generic prompt so you can see the
structure we have followed:

You are an assistant responsible for creating data quality rules based on the user's statement.

First, evaluate if you need to perform an aggregation. Then create all the necessary rules. If

you need to create a rule for multiple columns, do not create multiple rules; create one rule

for N columns. The output of the rule tools should be included in the 'rules' field of the final

response. The last step is to create the necessary execution conditions if any. If any step

fails, retry it up to 3 times until a correct result is obtained.

3.5.3 Validation and testing

We conducted unit tests to ensure that each component of the rule object is

generated correctly and conforms to the expected format.

One of the issues we encountered when using a generative language model to

assemble the pieces of the final response was a lack of consistency. Specifically,

the model sometimes took "liberties" with the names of columns and other details,

resulting in errors that ruined the entire rule creation.

Other issues we encountered, along with the implemented solutions, were:

 OMMA Data S.L.

Page 13 of 23

This document is confidential and the property of OMMA Data SL. Its use, reproduction, or distribution is
prohibited without prior written authorization from OMMA Data SL.

• Standardisation and Validation of Column Names: We implemented strict

validation of column names at each step to ensure that the names used were

consistent throughout the entire process.

• Use of Parsers and Strongly Typed Structures: We reinforced the use of

parsers and strongly typed structures for each component of the workflow,

ensuring that the outputs of the LLMs conformed to the defined

specifications.

• Reinforcing Agent Logic with Additional Validations: We introduced

additional validations in the planning agent to automatically detect and

correct any inconsistencies in the generated output.

Despite these improvements, the responses, although obtained in the desired

format, were not 100% reliable. We attempted to adjust the prompt to prevent the

creation of new, invented columns and other liberties the LLM took, but we did not

achieve results reliable enough to conclude that it was a model implementable in

production.

Therefore, we slightly changed our approach.

3.6 Implementation of Improved Tools for Response Generation in
OMMA

To address the issues of consistency and accuracy in response generation, we

modified our tools. Instead of merely receiving the statement and dataset and

providing a unitary response, each tool also receives the Response object. In this

way, each tool programmatically fills in the corresponding section of the

Response based on the LLM's result and returns the updated Response. This

approach has proven to be significantly more effective.

 OMMA Data S.L.

Page 14 of 23

This document is confidential and the property of OMMA Data SL. Its use, reproduction, or distribution is
prohibited without prior written authorization from OMMA Data SL.

3.6.1 Modification of the Tools

Each tool now receives the Response object as input and updates it with

relevant information before returning it.

def create_join(statement, dataset, response: Response) -> Response:

 # Logic to create the join based on the statement and dataset

 join_result = some_llm_function_to_create_join(statement, dataset)

 # Update the Response object

 response.enrichDataformat = EnrichDataformatObject(table=join_result["table"],
on=join_result["on"])

 return response

3.6.2 Agent Configuration

We configured the planning agent to use these enhanced tools and return the final

Response object.

3.6.3 Benefits

• Improved Consistency: Each tool programmatically updates the Response

object, ensuring precise and consistent details.

• Structured and Usable Output: The final Response object is structured and

ready for direct use, minimizing errors.

• Continuous Validation: The validated structure of the Response helps detect

and correct errors at each stage of the process.

3.6.4 Token Consumption Issue

One issue we encountered with this approach is that, although highly reliable, token

consumption increased. Initially, pinpointing the problem was quite challenging.

When we bind tools in the LLM, the information from the tools is serialized and

stored in the LLM.

 OMMA Data S.L.

Page 15 of 23

This document is confidential and the property of OMMA Data SL. Its use, reproduction, or distribution is
prohibited without prior written authorization from OMMA Data SL.

In our case, because the tools included parameters that were complex Pydantic

classes, this added to token consumption. When using standard LangChain

methods to analyze consumption, this information did not appear as part of the

prompt tokens but still counted towards LLM consumption.

We had to engineer the tools to minimize the token space their definitions occupied

to prevent consumption from skyrocketing..

3.7 Implementation Summary

The final solution was to create an agent responsible for coordinating all actions

necessary to create OMMA rules. A key aspect was providing the sequence of steps

required to create a rule, both optional and mandatory. Each of these steps mapped

to a specific type of action, aiming to iteratively populate a Response object

containing all rule information.

The tools themselves form a chain with their prompt and LLM, tasked with creating

the rule or necessary step based on input and additional information like the dataset

it works on. It's worth noting that while the planner needed to use a GPT-4O model

in our case (any GPT-4 would have worked, but since we had this newer version

whose cost is half that of GPT-4 Turbo, why not use it), the actions were

implemented with GPT-3.5 Turbo, except for certain cases like generating execution

conditions which required more reasoning power.

Each tool now handles its specific task (e.g., creating a join, an aggregation, a

specific rule, or setting execution conditions) and updates the Response object with

relevant information. This approach ensures precision and coherence across the

entire generated output.

This implementation has proven much more effective by ensuring each component

of the rule creation process is handled in a structured and precise manner. The

programmatic iteration of the Response object by the tools ensures details are

consistent and correct, significantly enhancing the integrity and reliability of the

 OMMA Data S.L.

Page 16 of 23

This document is confidential and the property of OMMA Data SL. Its use, reproduction, or distribution is
prohibited without prior written authorization from OMMA Data SL.

data management system at OMMA. However, careful review of prompt size was

necessary because tools are serialized in calls, and if the Response object grew too

large, it could exponentially increase consumption. This is an area for future

investigation and work as system complexity and tool count may require revisiting

this architecture for better scalability.

The result is a modular and scalable system that facilitates extension and

maintenance. Each tool manages its specific part of the process, allowing easy

addition of new functions or adaptations to changing requirements. The planner

effectively coordinates all actions, and the tools update the Response object in a

structured manner, ensuring output accuracy and significantly reducing error risks.

This approach has notably improved the overall reliability of OMMA's system.

4. Integration in OMMA
At OMMA, as previously explained, there is a three-step workflow for creating rules

using an intuitive form. When a user creates a rule in OMMA, certain contextual

information is generated automatically, such as the user, metadata, and other

system-specific details. This information is crucial, but we did not want the

generative application to be responsible for filling it in. Therefore, we designed an

initial component in the rule creation forms that interacts with our planning agent to

obtain the Response object and map it to the necessary fields in the front end.

 OMMA Data S.L.

Page 17 of 23

This document is confidential and the property of OMMA Data SL. Its use, reproduction, or distribution is
prohibited without prior written authorization from OMMA Data SL.

This is the base form in OMMA for rule creation. With our integration with the

Generative AI Agent, we created a component like this:

This integration was initially implemented as a proof of concept (PoC) to validate

the entire end-to-end architecture. Through this testing process, we have been

able to identify and resolve potential issues, ensuring that the architecture is

robust and scalable. This validation has allowed us to refine our system, improving

both the user experience and operational efficiency.

 OMMA Data S.L.

Page 18 of 23

This document is confidential and the property of OMMA Data SL. Its use, reproduction, or distribution is
prohibited without prior written authorization from OMMA Data SL.

For testing, we used a public dataset from Kaggle:

(https://www.kaggle.com/datasets/thegurusteam/spanish-high-speed-rail-

system-ticket-pricing). This train travel dataset is quite comprehensive and we

frequently use it for various types of demonstrations in OMMA. The proof of

concept (PoC) allowed us to validate the entire end-to-end architecture, ensuring

that the system operates robustly and is scalable.

4.1 Testing and Validation

We will show you some examples of rule creation:

4.1.1 Dataset PK Validation

Usually, one of the first steps is to validate that the dataset's PK is not duplicated:

 I want to validate that the id field is not duplicated

As you can see, the system provides both a name for the rule and selects the

Duplicate Validation rule type and the ID field.

https://www.kaggle.com/datasets/thegurusteam/spanish-high-speed-rail-system-ticket-pricing
https://www.kaggle.com/datasets/thegurusteam/spanish-high-speed-rail-system-ticket-pricing

 OMMA Data S.L.

Page 19 of 23

This document is confidential and the property of OMMA Data SL. Its use, reproduction, or distribution is
prohibited without prior written authorization from OMMA Data SL.

This is the most basic test, and we will gradually complicate the rule creation

process.

4.1.2 Validation of Non-Null Fields

The next step will be to ensure that the columns of interest do not have null values:

I want to validate that neither the company, start station, end station, price, nor duration

fields are null

As can be seen, a null rule is created for the indicated fields:

 It is important to note that we have defined the columns somewhat loosely,

referring to start and end stations instead of origin and destination. As can be seen,

the system correctly identifies the desired columns.

I will add an extra element, which is to mark some custom data as nulls, such as na

and NA:

 OMMA Data S.L.

Page 20 of 23

This document is confidential and the property of OMMA Data SL. Its use, reproduction, or distribution is
prohibited without prior written authorization from OMMA Data SL.

 I want to validate that neither the company, start station, end station, price, nor duration

fields are null. Treat the values na and NA as null as well

Notice how, in this case, the specific rule configuration includes the custom values.

4.1.3 Validation with Execution Conditions

Now we will add an additional element, such as conditions:

If the price field is not null, I want you to validate that it is between 0 and 1000

 In this case, it correctly creates the value ranges rule:

 OMMA Data S.L.

Page 21 of 23

This document is confidential and the property of OMMA Data SL. Its use, reproduction, or distribution is
prohibited without prior written authorization from OMMA Data SL.

 And in step 3 of the execution conditions, it creates the specified condition:

We will create a video demonstrating more advanced concepts, such as
data aggregations, joins, and more complex conditions, to showcase the

power of the solution.

 OMMA Data S.L.

Page 22 of 23

This document is confidential and the property of OMMA Data SL. Its use, reproduction, or distribution is
prohibited without prior written authorization from OMMA Data SL.

5. Conclusions and Next Steps
From the tests conducted, we can proudly say that we have created the first

generative AI-driven system for the creation and deployment of quality policies.

However, achieving this required advancements in several areas, such as:

• Structured Information Agent Architecture: We developed an agent

architecture capable of working with structured information at every step,

ensuring consistency and accuracy in rule generation.

• Defined and Reliable Execution Flow: The architecture allows the generation

of complex structures step-by-step, following a reliably defined execution

flow. Each step is mapped to a specific action that ensures coherence and

precision in rule creation.

• Modular and Scalable Class and Tools Structure: We designed a class and

tools structure that facilitates the development and unit testing of the various

steps and elements in the rule creation flow. This modularity allows the

solution to scale and evolve easily and efficiently.

• Complete End-to-End Integration: A full end-to-end integration has been

carried out, from rule generation via LLMs to user review and adjustment on

the front end. This approach ensures a smooth user experience and a robust

implementation.

• Validation of Generative AI-Based Workflows: We validated the feasibility of

replacing traditional workflows with generative AI-based workflows. Testing

with real datasets has shown that the solution is not only viable but also

efficient and accurate.

With this, we now have the integration of rule creation via Generative AI in OMMA.

This has allowed us to develop the first generative AI-driven quality policy creation

system. Within OMMA, where one of our core principles is to facilitate the creation

of quality policies without technical knowledge, this represents a significant step

forward, exponentially simplifying rule creation.

 OMMA Data S.L.

Page 23 of 23

This document is confidential and the property of OMMA Data SL. Its use, reproduction, or distribution is
prohibited without prior written authorization from OMMA Data SL.

Moreover, within Mática, this has allowed us to validate our idea of evolving

interfaces towards much more user-friendly solutions. This advancement not only

transforms how users interact with our tools but also positions us at the forefront of

innovation in data quality management by effectively and practically incorporating

artificial intelligence into our solutions.

However, this is just the beginning. It marks the first successful step in a much

broader roadmap. So far, we have demonstrated an initial integration that replaces

our rule creation forms. But the system we have created not only allows for the

creation of one rule at a time but also enables us to create multiple rules from a

single instruction, which will be the next step. Subsequently, we will also work on

integrating this technology into many other interfaces, such as the intelligent rule

recommender. Additionally, we will explore new types of rules, where a SQL

statement can be introduced and the system itself converts it into a usable rule type

in OMMA.

We are also making progress with the implementation of LangGraph to compare its

efficiency with our current agent architecture and decide which is the best option

for OMMA.

Finally, through this integration with our GenAI Framework, we will be able to deploy

our solutions across various LLM platforms, adding observability and cost

measurement capabilities, and ensuring that our solutions are robust, scalable, and

adaptable to different environments. This initial development lays the foundation for

the continuous transformation of our tools, making data quality management

increasingly accessible, efficient, and powerful.

This initial development lays the foundation for the ongoing evolution of our tools,

making data quality management more accessible and efficient.

