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1. OMMA: an introduction 
OMMA is an advanced data quality tool designed to facilitate the creation and 

management of quality policies through no-code interfaces. From its inception, 

OMMA has aimed to empower users by allowing them to define data quality rules 

without needing extensive technical knowledge. This approach is based on the 

premise that a deep understanding of the data is more crucial than programming 

skills to ensure data integrity and accuracy. 

OMMA simplifies the task of creating data quality rules, which was traditionally done 

manually and technically, making it difficult and error-prone. With an intuitive 

platform, OMMA enables users to create policies based on their knowledge of the 

data, making the process easier and more efficient. 

 

2. Introduction to Integrating LLMs for 
Creating Natural Language Rules in 
OMMA 

We are currently immersed in the application of Large Language Models (LLMs) 

across a multitude of tasks. However, like all new technologies, they are in a process 

of evolution, standardization, and maturity. Today, the vast majority of use cases we 

encounter are based on the creation of chatbots, Retrieval-Augmented Generation 

(RAG) systems, and similar applications. The application of LLMs in other practical 

scenarios is not yet as widely exploited or documented. 

The integration of LLMs into productive processes, where entire areas or 

procedures can be replaced by a more agile and user-friendly interface, represents 

a significant transformation in how we interact with systems, such as data 

management systems. 
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At Grupo Mática, we have a significant advantage thanks to OMMA, our proprietary 

product. With OMMA, we can create, test, and deploy complete productive 

functionalities, such as the integration of LLMs in creating quality policies. This 

represents a significant step forward, allowing the establishment of rules using 

natural language. 

This integration has the potential to completely transform the process of defining 

data quality policies. By using LLMs, OMMA users will be able to formulate rules 

and guidelines in natural language, which will then be interpreted and executed by 

the system. This not only simplifies the process, making it more accessible to non-

technical users, but also accelerates implementation time and reduces the 

possibility of errors. 

The challenge we face with this integration lies in the need to transform data quality 

rules and policies that have traditionally been defined manually and technically, into 

understandable and applicable guidelines using natural language. This 

transformation will not only make the process more accessible but also improve 

efficiency and accuracy in data quality management. 

In this section, we will explore in detail the challenges and opportunities that come 

with integrating LLMs into OMMA. We will analyze how LLMs can efficiently and 

accurately interpret and generate data quality rules, thereby improving data 

governance. Additionally, we will discuss the methodologies and technical 

approaches we have adopted to ensure that this integration is not only effective 

but also scalable and secure. 
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2.1 Rule creation workflow in OMMA 

 

OMMA has been designed to simplify the creation and management of data 

quality policies through an intuitive process that requires no advanced technical 

knowledge.  

 

The system relies on a three-step form that allows users to define data quality rules 

efficiently and accurately. 

 

• Basic Rule Data: In this first step, the user selects the dataset on which they 

wish to apply their quality policies. They decide the type of rule they want to 

implement and give it a descriptive name. Additionally, they choose the 

specific columns of the dataset to which the rule will apply. The user also 

decides whether to work with the dataset in its original form or apply 

aggregations or joins to enrich the data. This initial step establishes the 

foundations of the rule and ensures its application to the relevant. 

 

• Specific Rule Data: In the second step, the specific behavior of the selected 

rule is configured. Depending on the type of rule, the user defines detailed 

parameters. For example, if a regular expression rule is chosen, the 

corresponding regular expression is entered. If the selected rule involves 

value ranges, the limits of the ranges are specified. This step allows for 

detailed customization of the rule, ensuring it fits the user's exact needs 

and the nature of the dataset. 
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• Execution Conditions: In the final step, the user sets the conditions under 

which the rule will be executed. This involves defining the conditions that 

the data must meet for the rule to be applied. For instance, conditions can 

be specified based on dates, specific values in other columns, or any other 

relevant criteria. This final stage ensures that quality rules are applied 

accurately and in the appropriate context. 

This three-step process in OMMA is straightforward and does not require 

advanced technical skills, but rather a deep understanding of the data and the type 

of validation that needs to be implemented.  

Considering modifying this workflow by replacing it with an LLM requires the system 

to be capable of mimicking this rule creation behavior. 

 

2.2 Generative Application Requirements for OMMA 

To create a generative AI-based system that replaces the rule creation forms in 

OMMA, it is necessary to ensure that the workflow is efficient, replicates the current 

process, and that the outputs generated are structured and reliable. Below are the 

key components and requirements to achieve this objective. 

 

Workflow Definition: Steps to Follow 

The system must follow a nested workflow that allows users to create data quality 

rules in a structured and sequential manner. This workflow consists of the following 

steps: 

• Creation of Joins (Optional): The system should allow users to specify if they 

want to perform joins with other tables in the database. This involves 

identifying and selecting the relevant tables and defining the join conditions. 
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• Creation of Aggregations (Optional): Users may choose to apply 

aggregations to the data. The system should offer options to select the types 

of aggregations (e.g., sums, averages) and the columns to which they will be 

applied. 

• Definition of Rules: This is the mandatory step where users specify the type 

of rule they want to create (e.g., regex, value ranges) and provide the specific 

parameters for each type. 

• Configuration of Execution Conditions (Optional): The system should allow 

the configuration of conditions under which the rules will be executed, 

ensuring that the rules are applied only to the relevant data. 

 

 Structured Output  

To ensure the reliability of the system, it is vital that the information handled by the 

language model is structured. This means that the output generated by the AI must 

have a predefined format that includes all the necessary components: aggregation, 

join, list of rules, and execution conditions. This has been one of the critical points. 

There is ample documentation on how to implement chains with structured outputs 

and even simple agents, but when we enter complex agent systems, as we will see 

later, the technical solution becomes more complicated. 

 

Components of the Response Object 

The response object of the system should be composed of the following elements: 

• Joins: Information about the tables to join and the join conditions. 

• Aggregations: Details about the types of aggregations and the columns to 

which they are applied. 
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• List of Rules: Definition of the specific rules, including the type of rule and its 

parameters. 

• Execution Conditions: Conditions under which the rule should be executed. 

 

This will be the final structure that the system must provide, which, as can be seen, 
is a composition of the output information from each of the steps. 

 

3. Design of Generative Application 
In designing the application, we considered two main approaches: creating an 

agent with multiple tools responsible for reasoning and coordinating the process, 

and using a library like LangGraph to define a state map and execution flow. We 

opted to start with the first option due to our limited experience with LangGraph, as 

it is a relatively new and less mature library. 

 

3.1 Customized Agent for Process Coordination 

For system development, we decided to create a customized agent with two main 

components: a planner responsible for controlling the execution flow and, based 

on specific actions, filling in the final response object. 

Each action is itself a specific chain, responsible for executing a specific step, such 

as creating a schema validation rule, creating a join, etc. This approach allowed us 

to modularize the code and facilitate system performance evaluation, as we could 

independently test each action and validate its output against the expected 

structure before integrating it into the main agent. 
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3.2 Class Structure with Pydantic 

The first step was to design a class structure using Pydantic, similar to the 

structure we manage in our OMMA backend. This ensured consistency and data 

validation throughout the development process. The class structure included 

components such as aggregations, joins, execution conditions, and different types 

of rules. 

Consistency in class definitions is crucial. For instance, in our case, we have a 

backend in Spring Boot that defines the classes and their storage in the database. 

These classes have corresponding interfaces in TypeScript in the frontend, and the 

Pydantic classes were also created with similar correspondences. This way, 

systems can exchange data seamlessly between the frontend, backend, and 

generative AI. 

 

3.3 Structured Output Configuration 

For each rule, we configured a structured output using the following configuration: 

 

structured_llm = model.with_structured_output(QualityAggregation) 

This configuration forced the LLM to provide output in the necessary class, offering 

two main advantages: 

• Optimal Modularization: Allowing each system component to be developed 

and tested independently. 

• Efficient Unit Testing: Facilitating the evaluation of each rule's behavior by 

comparing the LLM's output object with the expected object. 

 

 

 



 

 

 

 
 

                     OMMA Data S.L. 

 

Page 10 of 23 

 

This document is confidential and the property of OMMA Data SL. Its use, reproduction, or distribution is 
prohibited without prior written authorization from OMMA Data SL. 

 

3.4 Planner Agent 

Once the fundamental components were developed, we focused on creating the 

planner. The planner acts as the main agent, coordinating all the necessary 

actions to complete the rule creation flow based on user inputs. Below, we describe 

the planner implementation process and how it integrates with the tools and 

language model. 

 

# Defining OMMA Tools 

omma_tools = [...]  # List of necessary tools for the agent 

llm_with_tools = llm.bind_functions([omma_tools + Response]) # Including the defined tools and 

the response object created in Pydantic 

 

3.5 Implementing Structured Output in the Planning Agent using 
LangChain 

To address how to add structured output to the planning agent, we followed 

LangChain's instructions for agents with structured output. The approach involves 

creating a parser that is added to the tools bound to the planner agent's LLM, but 

not to the tools sent to the AgentExecutor. 

 

3.5.1 Defining the Response Class: 

We define the Response class using Pydantic to structure the desired output. 
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from pydantic import BaseModel, Field 

from typing import Optional, Union, List 

class Response(BaseModel): 

    joins: Optional[QualityJoins] = Field(description=" Joins to perform") 

    aggregation: Optional[QualityAggregation] = Field(description=" Performed aggregation") 

    rules: List[QualityRule] = Field(description="The created rules") 

    conditions: Optional[QualityCondition] = Field(description=" Rule execution conditions") 

 

3.5.2 Creating the Parser: 

We used LangChain to create a parser responsible for formatting the planning 

agent's output. Detailed instructions can be found in LangChain's documentation:  

https://python.langchain.com/v0.1/docs/modules/agents/how_to/agent_stru

ctured/ 

It is important to bind the response object to the LLM used for the planning agent 

but not to include it in the AgentExecutor tools. The parser is included in the agent 

as follows:  

 

agent = ( 

    { 

        "input": lambda x: x["input"], 

        # Formatting the agent scratchpad from the intermediate steps 

        "agent_scratchpad": lambda x: format_to_openai_function_messages( 

            x["intermediate_steps"] ), 

    } 

    | full_prompt 

    | llm_with_tools # Include Response in bind tools | parser 
) 

 
 
An important aspect of the above code is the need to bind the tools with the LLM 
(Language Model) that will be used and include the Response object. 
 

https://python.langchain.com/v0.1/docs/modules/agents/how_to/agent_structured/
https://python.langchain.com/v0.1/docs/modules/agents/how_to/agent_structured/
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The AgentExecutor is responsible for executing the agent with the necessary tools, 
maintaining the capability to return intermediate steps for analysis. 
 
 

# Creation of the Agent Executor 

agent_executor = AgentExecutor(agent=agent, tools=omma_tools, verbose=True, 
return_intermediate_steps=True) 
 

 
It's important not to include the parser in the tools sent to the AgentExecutor; it 
should only be bound to the LLM of the planning agent. 
 

3.5.2.1  Creating the Prompt 
Although we cannot include the full prompt due to intellectual property reasons for 
our product, we can provide a somewhat more generic prompt so you can see the 
structure we have followed: 
 
 

You are an assistant responsible for creating data quality rules based on the user's statement. 

First, evaluate if you need to perform an aggregation. Then create all the necessary rules. If 

you need to create a rule for multiple columns, do not create multiple rules; create one rule 

for N columns. The output of the rule tools should be included in the 'rules' field of the final 

response. The last step is to create the necessary execution conditions if any. If any step 

fails, retry it up to 3 times until a correct result is obtained. 

 

 

3.5.3 Validation and testing 

We conducted unit tests to ensure that each component of the rule object is 

generated correctly and conforms to the expected format.  

 

One of the issues we encountered when using a generative language model to 

assemble the pieces of the final response was a lack of consistency. Specifically, 

the model sometimes took "liberties" with the names of columns and other details, 

resulting in errors that ruined the entire rule creation. 

Other issues we encountered, along with the implemented solutions, were: 
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• Standardisation and Validation of Column Names: We implemented strict 

validation of column names at each step to ensure that the names used were 

consistent throughout the entire process.  

 

• Use of Parsers and Strongly Typed Structures: We reinforced the use of 

parsers and strongly typed structures for each component of the workflow, 

ensuring that the outputs of the LLMs conformed to the defined 

specifications. 

 

• Reinforcing Agent Logic with Additional Validations: We introduced 

additional validations in the planning agent to automatically detect and 

correct any inconsistencies in the generated output. 

Despite these improvements, the responses, although obtained in the desired 

format, were not 100% reliable. We attempted to adjust the prompt to prevent the 

creation of new, invented columns and other liberties the LLM took, but we did not 

achieve results reliable enough to conclude that it was a model implementable in 

production.  

 

Therefore, we slightly changed our approach. 

 

3.6 Implementation of Improved Tools for Response Generation in 
OMMA 

 

To address the issues of consistency and accuracy in response generation, we 

modified our tools. Instead of merely receiving the statement and dataset and 

providing a unitary response, each tool also receives the Response object. In this 

way, each tool programmatically fills in the corresponding section of the 

Response based on the LLM's result and returns the updated Response. This 

approach has proven to be significantly more effective. 
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3.6.1 Modification of the Tools 

 

Each tool now receives the Response object as input and updates it with 

relevant information before returning it. 

 

def create_join(statement, dataset, response: Response) -> Response: 

    # Logic to create the join based on the statement and dataset 

    join_result = some_llm_function_to_create_join(statement, dataset) 

    # Update the Response object 

    response.enrichDataformat = EnrichDataformatObject(table=join_result["table"], 
on=join_result["on"]) 

    return response 

 

 

3.6.2 Agent Configuration 

We configured the planning agent to use these enhanced tools and return the final 

Response object. 

 

3.6.3 Benefits 

• Improved Consistency: Each tool programmatically updates the Response 

object, ensuring precise and consistent details. 

• Structured and Usable Output: The final Response object is structured and 

ready for direct use, minimizing errors. 

• Continuous Validation: The validated structure of the Response helps detect 

and correct errors at each stage of the process. 

 

3.6.4 Token Consumption Issue 

One issue we encountered with this approach is that, although highly reliable, token 

consumption increased. Initially, pinpointing the problem was quite challenging. 

When we bind tools in the LLM, the information from the tools is serialized and 

stored in the LLM.  
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In our case, because the tools included parameters that were complex Pydantic 

classes, this added to token consumption. When using standard LangChain 

methods to analyze consumption, this information did not appear as part of the 

prompt tokens but still counted towards LLM consumption. 

We had to engineer the tools to minimize the token space their definitions occupied 

to prevent consumption from skyrocketing.. 

 

3.7 Implementation Summary 

The final solution was to create an agent responsible for coordinating all actions 

necessary to create OMMA rules. A key aspect was providing the sequence of steps 

required to create a rule, both optional and mandatory. Each of these steps mapped 

to a specific type of action, aiming to iteratively populate a Response object 

containing all rule information. 

The tools themselves form a chain with their prompt and LLM, tasked with creating 

the rule or necessary step based on input and additional information like the dataset 

it works on. It's worth noting that while the planner needed to use a GPT-4O model 

in our case (any GPT-4 would have worked, but since we had this newer version 

whose cost is half that of GPT-4 Turbo, why not use it), the actions were 

implemented with GPT-3.5 Turbo, except for certain cases like generating execution 

conditions which required more reasoning power. 

Each tool now handles its specific task (e.g., creating a join, an aggregation, a 

specific rule, or setting execution conditions) and updates the Response object with 

relevant information. This approach ensures precision and coherence across the 

entire generated output. 

This implementation has proven much more effective by ensuring each component 

of the rule creation process is handled in a structured and precise manner. The 

programmatic iteration of the Response object by the tools ensures details are 

consistent and correct, significantly enhancing the integrity and reliability of the 
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data management system at OMMA. However, careful review of prompt size was 

necessary because tools are serialized in calls, and if the Response object grew too 

large, it could exponentially increase consumption. This is an area for future 

investigation and work as system complexity and tool count may require revisiting 

this architecture for better scalability. 

The result is a modular and scalable system that facilitates extension and 

maintenance. Each tool manages its specific part of the process, allowing easy 

addition of new functions or adaptations to changing requirements. The planner 

effectively coordinates all actions, and the tools update the Response object in a 

structured manner, ensuring output accuracy and significantly reducing error risks. 

This approach has notably improved the overall reliability of OMMA's system.  

 

4. Integration in OMMA 
At OMMA, as previously explained, there is a three-step workflow for creating rules 

using an intuitive form. When a user creates a rule in OMMA, certain contextual 

information is generated automatically, such as the user, metadata, and other 

system-specific details. This information is crucial, but we did not want the 

generative application to be responsible for filling it in. Therefore, we designed an 

initial component in the rule creation forms that interacts with our planning agent to 

obtain the Response object and map it to the necessary fields in the front end. 
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This is the base form in OMMA for rule creation. With our integration with the 

Generative AI Agent, we created a component like this: 

 

This integration was initially implemented as a proof of concept (PoC) to validate 

the entire end-to-end architecture. Through this testing process, we have been 

able to identify and resolve potential issues, ensuring that the architecture is 

robust and scalable. This validation has allowed us to refine our system, improving 

both the user experience and operational efficiency. 
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For testing, we used a public dataset from Kaggle: 

(https://www.kaggle.com/datasets/thegurusteam/spanish-high-speed-rail-

system-ticket-pricing). This train travel dataset is quite comprehensive and we 

frequently use it for various types of demonstrations in OMMA. The proof of 

concept (PoC) allowed us to validate the entire end-to-end architecture, ensuring 

that the system operates robustly and is scalable. 

 

4.1 Testing and Validation 

We will show you some examples of rule creation: 

 

4.1.1 Dataset PK Validation  

Usually, one of the first steps is to validate that the dataset's PK is not duplicated: 

 I want to validate that the id field is not duplicated 

 

As you can see, the system provides both a name for the rule and selects the 

Duplicate Validation rule type and the ID field. 

https://www.kaggle.com/datasets/thegurusteam/spanish-high-speed-rail-system-ticket-pricing
https://www.kaggle.com/datasets/thegurusteam/spanish-high-speed-rail-system-ticket-pricing
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This is the most basic test, and we will gradually complicate the rule creation 

process. 

 

4.1.2 Validation of Non-Null Fields 

The next step will be to ensure that the columns of interest do not have null values: 

 

I want to validate that neither the company, start station, end station, price, nor duration 

fields are null 

 

As can be seen, a null rule is created for the indicated fields: 

 It is important to note that we have defined the columns somewhat loosely, 

referring to start and end stations instead of origin and destination. As can be seen, 

the system correctly identifies the desired columns. 

 

I will add an extra element, which is to mark some custom data as nulls, such as na 

and NA: 
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 I want to validate that neither the company, start station, end station, price, nor duration 

fields are null. Treat the values na and NA as null as well 

 

 

Notice how, in this case, the specific rule configuration includes the custom values. 

 

4.1.3 Validation with Execution Conditions  

Now we will add an additional element, such as conditions: 

If the price field is not null, I want you to validate that it is between 0 and 1000 

 In this case, it correctly creates the value ranges rule: 
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 And in step 3 of the execution conditions, it creates the specified condition: 

 

We will create a video demonstrating more advanced concepts, such as 
data aggregations, joins, and more complex conditions, to showcase the 

power of the solution. 

 

 

 

 

 

 

 



 

 

 

 
 

                     OMMA Data S.L. 

 

Page 22 of 23 

 

This document is confidential and the property of OMMA Data SL. Its use, reproduction, or distribution is 
prohibited without prior written authorization from OMMA Data SL. 

 

5. Conclusions and Next Steps 
From the tests conducted, we can proudly say that we have created the first 

generative AI-driven system for the creation and deployment of quality policies. 

However, achieving this required advancements in several areas, such as: 

• Structured Information Agent Architecture: We developed an agent 

architecture capable of working with structured information at every step, 

ensuring consistency and accuracy in rule generation. 

• Defined and Reliable Execution Flow: The architecture allows the generation 

of complex structures step-by-step, following a reliably defined execution 

flow. Each step is mapped to a specific action that ensures coherence and 

precision in rule creation. 

• Modular and Scalable Class and Tools Structure: We designed a class and 

tools structure that facilitates the development and unit testing of the various 

steps and elements in the rule creation flow. This modularity allows the 

solution to scale and evolve easily and efficiently. 

• Complete End-to-End Integration: A full end-to-end integration has been 

carried out, from rule generation via LLMs to user review and adjustment on 

the front end. This approach ensures a smooth user experience and a robust 

implementation. 

• Validation of Generative AI-Based Workflows: We validated the feasibility of 

replacing traditional workflows with generative AI-based workflows. Testing 

with real datasets has shown that the solution is not only viable but also 

efficient and accurate. 

 

With this, we now have the integration of rule creation via Generative AI in OMMA. 

This has allowed us to develop the first generative AI-driven quality policy creation 

system. Within OMMA, where one of our core principles is to facilitate the creation 

of quality policies without technical knowledge, this represents a significant step 

forward, exponentially simplifying rule creation. 
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Moreover, within Mática, this has allowed us to validate our idea of evolving 

interfaces towards much more user-friendly solutions. This advancement not only 

transforms how users interact with our tools but also positions us at the forefront of 

innovation in data quality management by effectively and practically incorporating 

artificial intelligence into our solutions. 

However, this is just the beginning. It marks the first successful step in a much 

broader roadmap. So far, we have demonstrated an initial integration that replaces 

our rule creation forms. But the system we have created not only allows for the 

creation of one rule at a time but also enables us to create multiple rules from a 

single instruction, which will be the next step. Subsequently, we will also work on 

integrating this technology into many other interfaces, such as the intelligent rule 

recommender. Additionally, we will explore new types of rules, where a SQL 

statement can be introduced and the system itself converts it into a usable rule type 

in OMMA. 

We are also making progress with the implementation of LangGraph to compare its 

efficiency with our current agent architecture and decide which is the best option 

for OMMA.  

Finally, through this integration with our GenAI Framework, we will be able to deploy 

our solutions across various LLM platforms, adding observability and cost 

measurement capabilities, and ensuring that our solutions are robust, scalable, and 

adaptable to different environments. This initial development lays the foundation for 

the continuous transformation of our tools, making data quality management 

increasingly accessible, efficient, and powerful. 

This initial development lays the foundation for the ongoing evolution of our tools, 

making data quality management more accessible and efficient. 


